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MOTION OF A SPHERICAL CLOUD OF BUBBLES IN A LIQUID 

WITH MOTIONLESS PACKING 

V. V. Dil'man and V. L. Zelenko UDC 532.529 

On the basis of Darcy's linear law of resistance, the problem of the ascent of 
a spherical cloud of bubbles in an infinite liquid with a motionless solid 
phase is solved. The influence of inertia of the liquid on the character of 
cloud deformation is discussed. 

In investigating the structure of a real bubbling layer with packing under the action of 
various kinds of perturbation, it is of interest to determine both the distance to which the 
perturbation of the liquid velocity field excited by a finite region with increased gas content 
penetrates and the change in this region over time~ 

In the two-phase case, in the absence of packing, the problem of the collective inter- 
action of bubbles in a cloud was considered in [i], where macroscopic homogeneity of the 
cloud was assumed, with the consequence that the problem of large-scale liquid motion was 
not considered, but a new statistical model of the constrained motion of bubbles was pro- 
posed. The bubble cloud considered in the present work is macroscopically inhomogeneous, 
since the gas content is nonuniformly distributed over the llquid-filled space. Therefore, 
it is necessary to take account of large-scale motion in investigating the hydrodynamic in- 
teraction of the phases. In [2], the motion of a macroscopically inhomogeneous cloud of 
bubbles moving in viscous conditions was considered. The approximate Lamb--Tem method was 
used in [2]; in this method, in calculating the drag force of the i-th bubble, in the cloud, 
all the other drag forces are replaced by point forces, when numerical calculation of the 
combined motion of a few hundred bubbles is possible. However, in the presence of solid 
phase, no such simple and computationally expedient schematization is possible and, in addi- 
tion, the bubble motion is usually found to be inertial in character, in practice. On the 
other hand, if the number of bubbles is sufficiently large, their collective interaction 
reduces approximately to the interaction of an arbitrarily chosen bubble with the mean ve- 
locity field of the liquid arising as a result of the different buoyancies of the elements 
of the medium, which is uniquely related to the spatial distribution of the gas phase. This 
approximation may be described by the methods of the mechanics of multivelocity continua 
based on averaging theory [3]. However, methods of classical filtration theory, which is 
based on Darcy's linear filtration law, are sufficient for the elucidation of the character 
of phase motion [4, 5]. 

A system of phase-continuity and momentum equations is proposed for the description of 
the phase motion in a three-phase motionless layer; after simple transformations , the sys- 
tem takes the form 

Oq/Ot = div [(1 -- q) 7~], (1) 

aq/Ot +div  (qV--~) = O, (2) 
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(l--q)(OVa/Ot + (VW) V~)= - -  vHIoo - -  (vlKOV~ + [1 - -  (1 - -  a) q] ~ (3) 

- v n  + (po~/K,)(V~ - ~ , )  = o. ( 4 )  

The system in Eqs. (1)-(4) is obtained under, the assumption of imcompressibility of the 
phases and an infinitely small gas density. So that the more complex hydrodynamic aspect of 
the phase Interaction may be better elucidated, no account is taken of =he scattering of the 
gas bubbles by the packing, the efficiency of which may be estimated on the basis of simple 
diffusional representations, from which it follows, in particular, that the role of this 
mechanism decreases with increase in spatial scale. It is also ass..med that Darcyls linear 
law is satisfied in the phase interactions. The coefficient a describes the part of the 
Archimedes force acting on thebubble which equilibrates the reaction of the packing. Note 
that the convective momentum transfer in Eq. (3)p of order poV~/R, may always be neglected in 
comparison with the filtrational resistance of the packing, which, when Re~>> i, is deter- 
mined to a considerable extent by the local pressure g=adient, the order of magnitude of 
which is 0oV~/~. When Re~l, this relation between the terms of Eq. (3) is well satis- 
fied. In addition, the term ~V,/~t may also be significant, since the characteristic time 
of the nonsteady problem is determined by the relatively fast upward motion of the gas bub- 
bles. 

After introducing new scales -- the length R, time R/Wo, the velocity Wo, the pressure 
OovoWoR/Kx, and the gas fi11Ing qo -- Eqs. (1)-(4) are written in dlmenslonless forn%in a co- 
ordinate sytem moving at a velocity Wo along the axis Oz directed vertically upward 

qo (Oq'/Ot - -  Oq'/Oz) = div [(l--qoq') VII, (5) 

Oq'/Ot + div (q'V2)=0, (6) 

(1 --qoq') S [OV'/Ot - -  OV~/Oz] = --VP' - - V '  + Arq~, (7) 

- - m v p ' + ( V ~  - -  ~,) = 0. (8) 
Here Ar= (I -- a)gK1qo/vWo; S = KxWo/R~ are the modified Archimedes and Strouhal numbers; 

V~ is the liquid velocity in the rest coordinate system; ~a is the gas velocity in a moving 
coordinate system; p' ffi(K,/oo~ WoR)(H + pogz). Consideration is limited to systems with 
small gas filling qo~ i. The solution of the problem may then be written in the form of a 
series expansion in terms of the small parameter qo. The system of equations defining the 
zero approximation takes the form 

div F ~ = 0, (9) 
aq~ § div (q~ = O, (lO) 

S (OP?/Ot - -  O-V?/Oz) = - -  Vp~ q-- Ar qO~ (11) 

~ = ~o _ mvp% (12) 

It follows from Eq. (9) that, in the zero approximation, the motion of the liquid phase 
may be considered as motion of an incompressible homogeneous liquid. This assumption is 
analogous to the well,known Boussinesq approximation in =he theory of heat conduction [7, 8]~ 
within the framework of which the change in density of the medium is taken into account only 
in the term describing the uplift force. In all other respects, the medium is assumed to be 
incompressible. 

After applying the operator div to Eq. (ii), it is found that 

Apo = ArOqO/Oz. (13) 

Using the equations obtained, the problem of the motion of a bubble cloud initially filling 
a sphere of radius R is considered. Transforming to dimensionless quantities, the initial 
gas filling may be written in the form 

qo = ~(~, (14) 

{ I , p ~ 1  
where X= O,p>l is the characteristic function of a sphere of unit radius. 

It follows from Poisson's Eq. (13) that 

pO = _ (Ar/4~) ~ [(Oq~ --P'[] d~, (~' 6 ~). (is) 
e 

Then 
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Oq~ = ~. grad Z ( ~  = - -  ~ '  ~ '  8 (p - -  p'),  p '  E E. (16)  

Substituting Eq. (16) into Eq. (15) gives 

pO = (Ar/4~) ~ (e nllp--p'l)da. (17)  
z 

The calculatlon of the integral in gq. (17) for the case when E is a sphere of unit radius 
gives the following expressions for po: in the ga~-filled region, i.e., when p -<~1 

po = 1 A r p c o s V ,  (18)  
3 

in t h e  external region (i < 0) 

po = 1../--Ar cos V/p2, (19)  
3 

where p is the radius; ~ is the polar angle of the spherical coordinate system, with its 
origin at the center of the sphere Z and its polar axis along the axis Oz. Using Eqs. (18) 
and (19), the velocity field of the liquid is determined from Eq. (ii) under the assumption 
that the motion is inertlaless, i.e., when S = O 

o<1, f? =!A~ (2o1 
3 

It follows from the expression obtained that liquid motion in the gas--liquid mixture is 
quasisolid in character. Substitution of Eqs. (18) and (20) into Eq. (12) gives 

V~ = [(2 - -  m)/3] A r ~  (21)  

Thus, the motion of the gas is also uniform and rectilinear; hence, it follows, in 
particular, that the spherical bubble cloud is not deformed as it moves. Since m~l, while 
d ~, the rate of bubble ascent in the cloud exceeds the rate of ascent of a single bubble, 
according to Eq. (21). 

It follows from Eqs. (19) and (ll) that, in the external region (i < p), the liquid mo- 
tion is described by the potential of a vertically oriented dipole ~=-mocos ~/4~p a of power 
mo = (4~/3)Ar. It is not difficult to establish here [9] that the velocity field of the 
liquid in this region coincides with the velocity field arising in the motion of a sphere of 
unit radius (occupying the same volume as the gas--liquid mixture at the given time) in an 
ideal liquid at a velocity (2/3)Are. 

It follows from the relations obtained that the liquid flow is of potential type both 
in the gas--llquid mixture (p~l) and in the external region (i < p); however, the spherical 
surface E(O = I) bounding this region is a vortex sheet [i0], 

Note that the quasisolid character of the p~ase motion in the region filled with gas-- 
liquid mixture is a consequence of the spherical bubble cloud. Thus, in the plane case, 
which corresponds to a cloud in the form of an infinite cylinder with a horizontal generatrix, 
the liquid motion in the cloud breaks down into two oppositely oriented point eddies; however, 
this cloud is not deformed as it moves. In the case of a cloud of arbitrary form, even in 
the inertialess approximation, ascent of the cloud is accompanied by its deformation. 

Consider the question of the influence of liquid inertia on the phase motion. It may 
be shown that, when S # 0, steady ascent of a spherical cloud of bubbles unaccompanied by its 
deformation is impossible. It is assumed t h a ~  such motion exists, and the spherical cloud 
ascends at some velocity u. Next, Eq. (ii) is written in a coordinate system fixed in the 
bubbles 

S (--OV~/Ot § uO'V?lOz) - -  P~ - -  Vp ~ §  qO~ = 0. (22)  

Here ~ is the liquid velocity in the coordinate system fixed in the motionless packing; 
~/~t = 0 since steady conditions have been assumed. Limitlng consideration to V~z on the 
vertical axis Oz with its origin at the center of the cloud, and taking account of Eqs. (14), 
(18), and (19), Eq. (22) takes the form: on the semiline 1 < z 

on the cloud diameter 

SudVOz/d z_Vo2 = - -  2 , Ar/z3, (23)  
3 

o o 2 SudVlz/dZ - -  Vtz ---- -- ~ Ar. (24)  
3 
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In solving Eqs. (23) and (24), the boundary conditions which must be used are that the li- 
quid is unperturbed at infinity and that V~z is continuous at the point z = 1 at the cloud 
boundary. Denoting the liquid velocity at the point z = --i by V_ and that at the point 
z = i by V+, the solution obtained for Eqs. (23) and (24) may Be used to write an expression 
for the difference between these velocities 

where 

V_ - -  V + :  2__ Ar [l - -  exp ( - - 2 / S u ) ] ( 1  - -  I ) ,  
3 

(25) 

ff exp (--t) dr. 1 
I = (Sut + 1p 

(26) 

It follows from Eqs. (25) and (26) that when Su > 0 

V > V+ (27) 

In view of Eqs. (20) and (21), an analogous inequality is valid for the velocity of the gas 
phase at the given points, and hence steady conditions of cloud ascent are impossible. 

Returning to the actual nonsteady motion, consider quasiateady conditions of ascent, 
in whlch the initial conditions for the phase velocity coincide with the distribution of the 
phase veloelties in the noninertial approximation already considered. In this case, 8~/ 
@t -+ 0 when S § 0, since steady conditions are achieved when S = O. Therefore, when S<<I, 
the first term in Eq. (22) may Be neglected at times when the deformation of the cloud is 
small. In this case, Eq. (27), obtained in considering the steady case, will evldently be 
valid, and hence it follows that the velocity of bubble ascent in the stern region of the 
cloud is larger than in the frontal region. Thus, in the initial stages of quasisteady as- 
cent of a spherical bubble cloud, the inertial effect consists in flattening of the cloud in 
the direction of its ascent, 

NOTATION 

q,_qo, local and characteristic gas filling (volume fraction Of gas in gas--liquid mix- 
ture); V,, V2, liquid and gas-phase velocities; po, true density of liquid; ~, pressure; 
g, acceleration due to gravity (vector); KI, K2, phase permeabilities of liquid and gas 
phases; R, radius of bubble cloud; 6, characteristic dimension of the packing element; Re6= 
V~/y, Reynolds number; WR, mean velocity of ascent of a single Bubble; d, bubble diameter; 
e, unit vertical vector; p, radius vector of the ~oint; ~, gas-filled region; Z, surface 
bounding the volume ~;n, external normal to Z; 6(p -- ~'), Dirac delta function; v, kinematic 
viscosity of the liquid. 
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